Inexact Josephy–Newton framework for variational problems and its applications to optimization
نویسندگان
چکیده
We propose and analyze a perturbed version of the classical Josephy-Newton method for solving generalized equations, and of the sequential quadratic programming method for optimization problems. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilzed version [9, 2], sequential quadratically constrained quadratic programming [1, 4], and linearly constrained Lagrangian methods [8, 3]. For the linearly constrained Lagrangian methods, in particular, we obtain superlinear convergence under the second-order sufficient optimality condition and the strict Mangasarian–Fromovitz constraint qualification, while previous results in the literature assume (in addition to second-order sufficiency) the stronger linear independence constraint qualification as well as the strict complementarity condition. For the sequential quadratically constrained quadratic programming methods, we prove primaldual superlinear/quadratic convergence under the same assumptions as above, which also gives a new result. Another possible application of the general framework is concerned with the development of truncated versions of sequential quadratic programming, which is regarded as a difficult issue for problems with inequality-type constraints [5].
منابع مشابه
Inexact Josephy-Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization
We propose and analyze a perturbed version of the classical Josephy– Newton method for solving generalized equations. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilized version, sequential quadratically constrained quadratic programming, and linearly constrained Lagrangian methods. For the linearly constrained Lagrangian me...
متن کاملInexact Josephy–newton Framework for Genereralized Equations and Its Applications to Local Analysis of Newtonian Methods for Constrained Optimization∗
We propose and analyze a perturbed version of the classical Josephy-Newton method for solving generalized equations. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilzed version, sequential quadratically constrained quadratic programming, and linearly constrained Lagrangian methods. For the linearly constrained Lagrangian meth...
متن کاملOptimization Methods in Banach Spaces
In this chapter we present a selection of important algorithms for optimization problems with partial differential equations. The development and analysis of these methods is carried out in a Banach space setting. We begin by introducing a general framework for achieving global convergence. Then, several variants of generalized Newton methods are derived and analyzed. In particular, necessary a...
متن کاملInexact Newton Methods for Semismooth Equations with Applications to Variational Inequality Problems
We consider the local behaviour of inexact Newton methods for the solution of a semis-mooth system of equations. In particular, we give a complete characterization of the Q-superlinear and Q-quadratic convergence of inexact Newton methods. We then apply these results to a particular semismooth system of equations arising from variational inequality problems, and present a globally and locally f...
متن کاملA Hybrid Josephy-newton Method for Solving Box Constrained Variational Inequality Problems via the D-gap Function
A box constrained variational inequality problem can be reformulated as an unconstrained minimization problem through the D-gap function. Some basic properties of the aane variational inequality subproblems in the classical Josephy-Newton method are studied. A hybrid Josephy-Newton method is then proposed for minimizing the D-gap function. Under suitable conditions, the algorithm is shown to be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009